Fork me on GitHub

OpenCV之core组件进阶

初级图像混合

分离颜色通道、多通道图像混合

改变图像对比度和亮度

初级图像混合

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;

int main()
{
Mat srcImage = imread("src.jpg");
Mat logoImage = imread("logo.jpg");

if(!srcImage.data)
{
printf("Oh, no, logoImage is error");
return false;
}
if(!logoImage.data)
{
printf("Oh,no, srcImage is error");
return false;
}

Mat imageROI;
imageROI = srcImage(Rect(500, 250, logoImage.cols, logoImage.rows));

addWeighted(imageROI, 1.0, logoImage, 0.5, 0.0, imageROI);

imshow("初级图像混合", srcImage);

return 0;
}

分离颜色通道、多通道图像混合

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
using namespace std;
using namespace cv;


bool MutiChannelBlending();

int main()
{
system("close5E");

if (MutiChannelBlending())
{
cout << endl << "嗯嗯,好了,得出你想要的混合图像了";
}

waitKey(0);

return 0;
}

//多通道图像混合的实现函数
bool MutiChannelBlending()
{
//定义相关变量
Mat srcImage;
Mat logoImage;
vector<Mat> channels;
Mat imageBlueChannel;

//多通道图像混合——蓝色分量部分

//读入图片
logoImage = imread("apple.jpg", 0);
srcImage = imread("4.jpg");

if (!logoImage.data)
{
printf("Oh, no, logoImage失败了吧");
return false;
}
if (!srcImage.data)
{
printf("Oh, no srcImage失败了吧");
return false;
}

//把一个3通道图像转换成3个单通道图像
split(srcImage, channels);
//将原图的绿色通道的引用返回给imageBlueChannel,注意是引用,相当于两者等价,
//修改其中一个另一个跟着变
imageBlueChannel = channels.at(0);
//将原图的蓝色通道的(500,250)坐标处右下方的一块区域和logo图进行加权操作,
//将得到的混合结果存到imageBlueChannel中
addWeighted(imageBlueChannel(Rect(500, 250, logoImage.cols, logoImage.rows)), 1.0,
logoImage, 0.5, 0, imageBlueChannel(Rect(500, 250, logoImage.cols, logoImage.rows)));

//将三个单通道重新合成一个三通道
merge(channels, srcImage);

//显示效果图
namedWindow("原图+logo蓝色通道");
imshow("原图+logo蓝色通道", srcImage);


//多通道图像混合——绿色分量部分

Mat imageGreenChannel;

srcImage = imread("src.jpg");
logoImage = imread("logo.jpg", 0);

if (!srcImage.data)
{
printf("Oh, no, srcImage失败了吧");
return false;
}
if (!logoImage.data)
{
printf("Oh,no,logoImage失败了吧");
return false;
}

split(srcImage, channels);
imageGreenChannel = channels.at(1);
addWeighted(imageGreenChannel(Rect(500, 250, logoImage.cols, logoImage.rows)), 1.0,
logoImage, 0.5, 0.0, imageGreenChannel(Rect(500, 250, logoImage.cols, logoImage.rows)));
merge(channels, srcImage);
namedWindow("原图+logo绿色通道");
imshow("原图+logo绿色通道", srcImage);



//多通道图像混合——红色分量部分

Mat imageRedChannel;

logoImage = imread("logo.jpg", 0);
srcImage = imread("src.jpg");

if (!logoImage.data)
{
printf("Oh, no, logoImage失败了吧");
return false;
}
if (!srcImage.data)
{
printf("Oh, no, srcImage失败了吧");
return false;
}

split(srcImage, channels);
imageBlueChannel = channels.at(2);
addWeighted(imageRedChannel(Rect(500, 250, logoImage.cols, logoImage.rows)), 1.0,
logoImage, 0.5, 0.0, imageRedChannel(Rect(500, 250, logoImage.cols, logoImage.rows)));
merge(channels, srcImage);
namedWindow("原图+logo红色通道");
imshow("原图+logo红色通道", srcImage);

}

改变图像对比度和亮度

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>


Mat srcImage;
Mat dstImage;

Mat B_position; //亮度
Mat C_Position; //对比度


int main()
{
srcImage = imread("srcImage.jpg");
if(!srcImage.data)
{
printf("Oh, no, srcImage is error");
return -1;
}

dstImage = Mat::zeros(srcImage.size(), srcImage.type());

//设置对比度、亮度的初值
C_Position = 80;
B_position = 80;

//创建窗口
namedWindow("效果图", 1);

createTrackbar("滑动条亮度", "效果图", &B_position, 200, ConstractAndBright);
createTrackbar("滑动条对比度", "效果图", &C_Position, 300, ConstractAndBright);

ConstractAndBright(B_position, 0);
ConstractAndBright(C_Position, 0);

while(waitKey(1) != 'q'){}


return 0;
}

//
//描述:改变图像对比度和亮度的回调函数
//
static void ConstractAndBright(int , void *)
{

namedWindow("原图", 1);

for(int y = 0; y < srcImage.rows; y++)
{
for(int x = 0; x < srcImage.cols; x++)
{
for(int c = 0; c < 3; c++)
{
dstImage.at<Vec3b>(y, x)[c] = saturate_cast<uchar>(
(C_Position * 0.01)*srcImage.at<Vec3b>(y,x)[c] +
B_position)
}
}
}

imshow("原图", srcImage);
imshow("效果图", dstImage);
}