Fork me on GitHub
晴宝

吃饱好减肥


  • 首页

  • 分类

  • 归档

  • 标签

  • 关于

leetcode之118. 杨辉三角

发表于 2019-04-03 | 分类于 leetcode
字数统计 355 字 | 阅读时长 1 分钟

题目描述:

给定一个非负整数 numRows,生成杨辉三角的前 numRows 行。

img

在杨辉三角中,每个数是它左上方和右上方的数的和。

示例:

1
2
3
4
5
6
7
8
9
10
> 输入: 5
> 输出:
> [
> [1],
> [1,1],
> [1,2,1],
> [1,3,3,1],
> [1,4,6,4,1]
> ]
>
阅读全文 »

剑指Offer之孩子们的游戏(圆圈中最后剩下的数)

发表于 2019-04-02 | 分类于 剑指Offer
字数统计 538 字 | 阅读时长 2 分钟

题目描述:

每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此。HF作为牛客的资深元老,自然也准备了一些小游戏。其中,有个游戏是这样的:首先,让小朋友们围成一个大圈。然后,他随机指定一个数m,让编号为0的小朋友开始报数。每次喊到m-1的那个小朋友要出列唱首歌,然后可以在礼品箱中任意的挑选礼物,并且不再回到圈中,从他的下一个小朋友开始,继续0…m-1报数….这样下去….直到剩下最后一个小朋友,可以不用表演,并且拿到牛客名贵的“名侦探柯南”典藏版(名额有限哦!!^_^)。请你试着想下,哪个小朋友会得到这份礼品呢?(注:小朋友的编号是从0到n-1)

阅读全文 »

剑指Offer之数字在排序数组中出现的次数

发表于 2019-04-02 | 分类于 剑指Offer
字数统计 317 字 | 阅读时长 1 分钟

题目描述:

统计一个数字在排序数组中出现的次数。

阅读全文 »

剑指Offer之把二叉树打印成多行

发表于 2019-04-01 | 分类于 剑指Offer
字数统计 198 字 | 阅读时长 1 分钟

题目描述:

从上到下按层打印二叉树,同一层结点从左至右输出。每一层输出一行。

阅读全文 »

剑指Offer之对称的二叉树

发表于 2019-04-01 | 分类于 剑指Offer
字数统计 273 字 | 阅读时长 1 分钟

题目描述:

请实现一个函数,用来判断一颗二叉树是不是对称的。注意,如果一个二叉树同此二叉树的镜像是同样的,定义其为对称的。

阅读全文 »

剑指Offer之左旋转字符串

发表于 2019-03-30 | 分类于 剑指Offer
字数统计 327 字 | 阅读时长 1 分钟

题目描述:

汇编语言中有一种移位指令叫做循环左移(ROL),现在有个简单的任务,就是用字符串模拟这个指令的运算结果。对于一个给定的字符序列S,请你把其循环左移K位后的序列输出。例如,字符序列S=”abcXYZdef”,要求输出循环左移3位后的结果,即“XYZdefabc”。是不是很简单?OK,搞定它!

阅读全文 »

剑指Offer之链表中环的入口结点

发表于 2019-03-30 | 分类于 剑指Offer
字数统计 351 字 | 阅读时长 1 分钟

题目描述:

给一个链表,若其中包含环,请找出该链表的环的入口结点,否则,输出null。

阅读全文 »

剑指Offer之字符流中第一个不重复的字符

发表于 2019-03-29 | 分类于 剑指Offer
字数统计 231 字 | 阅读时长 1 分钟

题目描述:

请实现一个函数用来找出字符流中第一个只出现一次的字符。例如,当从字符流中只读出前两个字符”go”时,第一个只出现一次的字符是”g”。当从该字符流中读出前六个字符“google”时,第一个只出现一次的字符是”l”。

输出描述:

1
2
> 如果当前字符流没有存在出现一次的字符,返回#字符。
>
阅读全文 »

监督学习

发表于 2019-03-29 | 分类于 机器学习
字数统计 1.1k 字 | 阅读时长 4 分钟

监督学习:

监督学习任务:回归 (用于预测某个值) 和 分类 (用于预测某个分类)

常见模型:K邻近值算法、线性回归、逻辑回归、支持向量机(SVM)、决策树和随机森林、神经网络

回归:

线性回归:线性模型更一般化的描述指通过计算输入变量的加权和,并加上一个常数偏置项(截距项)来得到一个预测值。

逻辑回归:

线性回归:
1
2
3
4
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X,y)
lin_reg.predict(X_new)

分类:

二分类:SVM、线性分类

多分类:随机森林、朴素贝叶斯

梯度下降(GD):

梯度下降的整体思路是通过的迭代来逐渐调整参数使得损失函数达到最小值。

假设浓雾下,你迷失在了大山中,你只能感受到自己脚下的坡度。为了最快到达山底,一个最好的方法就是沿着坡度最陡的地方下山。这其实就是梯度下降所做的:它计算误差函数关于参数向量 的局部梯度,同时它沿着梯度下降的方向进行下一次迭代。当梯度值为零的时候,就达到了误差函数最小值 。

具体来说,开始时,需要选定一个随机的\theta(这个值称为随机初始值),然后逐渐去改进它,每一次变化一小步,每一步都试着降低损失函数(例如:均方差损失函数),直到算法收敛到一个最小值。

在梯度下降中一个重要的参数是步长,超参数学习率的值决定了步长的大小。如果学习率太小,必须经过多次迭代,算法才能收敛,这是非常耗时的。

另一方面,如果学习率太大,你将跳过最低点,到达山谷的另一面,可能下一次的值比上一次还要大。这可能使的算法是发散的,函数值变得越来越大,永远不可能找到一个好的答案。

常见模型: 批量梯度下降(Batch GD)、小批量梯度下降(Mini-batch GD)、随机梯度下降(Stochastic GD)

批量梯度下降(Batch GD):

批量梯度下降的最要问题是计算每一步的梯度时都需要使用整个训练集,这导致在规模较大的数据集上,其会变得非常的慢。与其完全相反的随机梯度下降,在每一步的梯度计算上只随机选取训练集中的一个样本。很明显,由于每一次的操作都使用了非常少的数据,这样使得算法变得非常快。由于每一次迭代,只需要在内存中有一个实例,这使随机梯度算法可以在大规模训练集上使用。

随机梯度下降分类器(SGD):

这个分类器有一个好处是能够高效地处理非常大的数据集。这部分原因在于SGD一次只处理一条数据,这也使得 SGD 适合在线学习(online learning)。

1
2
3
from sklearn.linear_model import SGDClassifier
sgd_clf = SGDClassifier(random_state=42)
sgd_clf.fit(X_train, y_train_5)
小批量梯度下降(Mini-batch GD):

在迭代的每一步,批量梯度使用整个训练集,随机梯度时候用仅仅一个实例,在小批量梯度下降中,它则使用一个随机的小型实例集。它比随机梯度的主要优点在于你可以通过矩阵运算的硬件优化得到一个较好的训练表现,尤其当你使用 GPU 进行运算的时候。

支持向量机(SVM):

支持向量机(SVM)是个非常强大并且有多种功能的机器学习模型,能够做线性或者非线性的分类,回归,甚至异常值检测。

SVM 特别适合应用于复杂但中小规模数据集的分类问题。

线性支持向量机:

以下的 Scikit-Learn 代码加载了内置的鸢尾花(Iris)数据集,缩放特征,并训练一个线性 SVM 模型(使用LinearSVM类,超参数 C = 1,hinge 损失函数)来检测 Virginica 鸢尾花。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import numpy as np
from sklearn import datasets
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC

iris = datasets.load_iris()
X = iris["data"][:, (2, 3)] # petal length, petal width
y = (iris["target"] == 2).astype(np.float64) # Iris-Virginica

svm_clf = Pipeline((
("scaler", StandardScaler()),
("linear_svc", LinearSVC(C=1, loss="hinge")),
))

svm_clf.fit(X, y)

Then, as usual, you can use the model to make predictions:

svm_clf.predict([[5.5, 1.7]])
array([ 1.])

leetcode之112. 路径总和

发表于 2019-03-28 | 分类于 leetcode
字数统计 233 字 | 阅读时长 1 分钟

题目描述:

给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。

说明: 叶子节点是指没有子节点的节点。

示例:
给定如下二叉树,以及目标和 sum = 22,

1
2
3
4
5
6
7
8
>               5
> / \
> 4 8
> / / \
> 11 13 4
> / \ \
> 7 2 1
>

返回 true, 因为存在目标和为 22 的根节点到叶子节点的路径 5->4->11->2。

阅读全文 »
1…8910…16
晴宝宝

晴宝宝

151 日志
10 分类
18 标签
GitHub
© 2017 - 2021 晴宝宝
由 Hexo 强力驱动
主题 - NexT.Muse